在他提出该理念之后的几年中,其他物理学家纷纷给出了时间晶体不可能存在的理由,大多数物理学家似乎认为,由于时间晶体的性质太过古怪,因此不可能存在于实际当中。虽然时间晶体无法用来产生有用的能量 ( 因为它们一旦受到扰动,就会停止运行 ) ,而且并不违背热力学第二定律,但它们的确与物理学中一项基础的对称性相悖。
不过,来自加州大学圣芭芭拉分校 ( UCSB ) 和微软 Station Q 实验室的研究人员在一篇最新发表的论文中提出,时间晶体有可能真正存在。
他们主要关注的是时间晶体最令人惊奇的一点——有人预测称,时间晶体能够实现时间平移对称性的自发性破缺。为了帮助我们理解这句话的含义,研究人员首先解释了 " 自发对称性破缺 " 的意思。
" 显性对称性破缺和自发对称性破缺之间最大的区别在于," UCSB 的一名物理学家、该研究的共同作者多米尼克 · 埃尔斯说道," 如果对称性出现了显性破缺,那么自然法则中就不再含有这一对称性了;但自发对称性破缺则意味着,自然法则仍保留着原本的对称性,但自然却选择了另一种不具备对称性的状态。"
如果时间晶体真的能自发地打破时间平移对称性的话,那么管控时间晶体的自然法则就不会随着时间的流逝而改变,但由于时间晶体的基态运动状态,时间晶体本身是会随着时间而发生变化的,也就自发地打破了这种对称性。
虽然人们此前从未观察到过时间上的平移对称性的自发破缺,但除此之外,其他各类自发对称性破缺都曾被观察到过。磁铁就是一个常见的例子。自然法则无法强制决定磁铁的哪一头是北极、哪一头是南极。但任何磁铁材料都自发地打破了这种对称性,选定其中一头作为北极。另一个例子则是普通的晶体。虽然无论是在旋转还是平移的空间中,自然法则都不会发生改变,但晶体会自发地打破这些空间对称性,因为如果改变了观察角度、或者在空间中的位置发生了些许变化,晶体看上去都会有所不同。
在这项最新研究中,物理学家专门规定了时间平移对称性发生自发性破缺的条件,然后通过模拟,预测出这一对称性破缺将会发生在一类名为 " 弗洛凯多体局部驱动系统 " 的量子系统中。科学家解释,这些系统的关键特征是,它们永远都不会达到热平衡状态,因此温度永远都不会升高。
对时间平移对称性破缺的最新定义与其他对称性破缺十分相似。基本上来说,随着一个系统 ( 比如晶体 ) 的体积增大,从对称性破缺状态回归对称状态的时间也会相应延长。而无穷大系统则永远也无法到达对称状态,因此,整个系统的对称性都处于破缺状态。
" 我们的工作有两大意义。从一方面来看,它说明了时间的平移对称性也是可以出现自发性破缺的。" 微软 Station Q 实验室的一名研究人员、共同作者贝拉 · 鲍尔表示," 从另一方面来看,它让我们进一步了解到,非均衡系统中可以出现很多有趣的物质状态,而这些状态在均衡系统中是不存在的。"
据物理学家表示,我们应该可以通过实验观察到时间平移对称性破缺。这需要利用一套由受限原子、受限离子、或超导量子比特构成的大型系统,打造出一块时间晶体,然后观察随着时间的流逝、这些系统会发生怎样的变化。科学家预测称,这些系统将会呈现出周期性的振荡运动状态,这正是时间晶体的标志性特征之一,并且印证了时间平移对称性破缺的存在。
" 我们正在和实验研究组共同努力,一起探索在低温原子气体系统中实现弗洛凯时间晶体的可能性。" 此次研究的共同作者舍坦 · 纳亚克说道。